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Abstract: Personalized Quality-of-Service (QoS) 
prediction is an indispensable technique to select 
suitable services for service-based cloud applications. 
Considering the dynamic nature of services, efficiently 
and accurately predicting QoS value becomes an urgent 
and crucial research issue. In this paper, we propose an 
online personalized QoS prediction approach for cloud 
service, namely online learning based matrix 
factorization (OLMF). We build the objective function 
of online matrix factorization and use stochastic gradient 
descent algorithm to solve the function. Extensive 
experiments are conducted on real world public datasets, 
which verify the effectiveness and efficiency of our 
proposed approach.
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1  Introduction 
Nowadays, with the development of Internet technology, 
cloud computing has gained increasing prevalence [1], 
[2]. Implemented based on service-oriented architecture 
(SOA), many cloud computing platforms utilize cloud 
services as the accessible interfaces for various services, 
for example, data storage service and data access service 
[3], [4], [5]. Actually, cloud services have become the 
underlying components in building high quality cloud 
computing applications [6], [7]. However, as the number 
of cloud services is booming exponentially, service users 
(cloud applications that invoke the services) are faced 
with a massive set of candidate services providing 
equivalent or similar functionalities, which leads to great 
difficulty in selecting proper services for each user. 
Especially, since these services may vary in real-time, 
the service users need online select the suitable services. 
Therefore, exploring efficient techniques to build high 
quality cloud services becomes an urgent and crucial 
research problem [8], [9].  

To select the most suitable service from a set of 
candidates, non-functional Quality-of-Service (QoS) 
performance of cloud services becomes a major concern. 
Many QoS-based approaches have been proposed for 
cloud service composition [10], [11], cloud service 
selection [12], [13], and so on. QoS performance 
properties are mainly comprised of availability, response 

time, reliability, throughput, etc. [14], [15]. In practice, 
the user-observed QoS values of most component 
services are unknown or vary due to the following 
reasons. For one thing, it is too time-consuming and 
expensive for users to directly invoke all of cloud 
services, so there are many unknown QoS property 
values observed by users. In order to get the unknown 
QoS values, it is essential to utlize effective prediction 
technology. For another, QoS properties (e.g., response 
time, invocation failure rate) observed by different user 
(e.g., located in different geographical location) are 
usually different when invoking the same cloud service. 
This is because the service status (e.g., workload, 
number of clients, etc.) and the network environment 
(e.g., congestion, etc.) may change over time, so the 
known values may be not specific. Since the 
user-observed QoS values may be changed, it is difficult 
for cloud application designers to select optimal cloud 
services at design time and replace low quality cloud 
services with better ones at runtime [8]. Building high 
quality cloud computing applications need the services 
with sufficient personalized user-observed QoS. 
Therefore, in order to provide users with online 
personalized QoS information of cloud services, it 
becomes an urgent task to explore effective approaches 
to accurately and efficiently predict the unknown QoS 
values of candidate services without requiring direct 
invocations. 

To address the problems above, in this paper, we 
propose an online personalized QoS prediction approach 
based on online learning for cloud computing 
applications. In our approach, matrix factorization (MF) 
technology is used to predict the optimal unknown QoS 
values. Different from the conventional MF model 
applied in recommender systems, we extend the 
conventional MF model into an online QoS prediction 
approach, namely online learning based matrix 
factorization (OLMF). Under the object function, we use 
online stochastic gradient descent algorithm to solve the 
function. Noteworthily, to evaluate our approach, we 
conduct extensive experiments in real world public 
datasets in comparison with several well-known 
methods. The experimental results show the 
effectiveness and efficiency of our approach. 

Briefly summarized, the main contributions of this paper 
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can be concluded as the following aspects: 1) We 
identify the problem of QoS personalized prediction for 
SOA based cloud computing applications. 2) We 
propose an online learning based personalized QoS 
prediction approach named OLMF, which employ 
techniques of online learning and matrix factorization. 3) 
We conduct sufficient experiments on real-world 
datasets, which verify the effectiveness of our models 
under various experimental cases. 

The rest of this paper is organized as follows: Section 2 
presents related work. We present the framework of QoS 
prediction based on OLMF in Section 3. Then we 
describe our OLMF approach for QoS prediction in 
Section 4, and demonstrate the experimental results in 
Section 5. Finally, we conclude the whole paper and 
discuss the future work. 

2  Related work 
In this section, we review the related work from two 
aspects: matrix factorization and online learning. 

2.1 Matrix factorization
In most of the existing reports, collaborative filtering 
(CF) method is a popular approach to predict QoS 
values. CF can be divided into memory-based CF, 
model-based CF, and other hybrid CF. Matrix 
Factorization (MF) is a typical model-based approach in 
CF, which has been employed for QoS value prediction 
by academia and industry in recent years [16], [17]. The 
main idea of MF-based QoS value prediction methods is 
to train a model according to the available QoS values in 
the users-services matrix (i.e., historical QoS values 
contributed by different users) to predict unknown QoS 
values in the matrix, which is to exploit the latent factors 
that can determine QoS both from the user and the 
service aspects. Matrix Factorization models are 
accurate and scalable in many applications [18], [19], 
[20]. Zheng et al. [18] proposed an extended MF model 
named NIMF, which fuses the neighborhood-based and 
model-based collaborative filtering approaches to 
achieve higher prediction accuracy. Aiming to avoid the 
expensive and costly service invocations, Lo et al. [19] 
proposed an extended Matrix Factorization (named EMF) 
framework with relational regularization to make 
unknown QoS values prediction. In recent years, many 
researchers focus on integrating MF with additional 
information (e.g., geographical location, time, reputation, 
etc.). Zhang et al. [20] proposed a time-aware 
personalized QoS prediction framework called WSPred. 
Xu et al. [21] proposed a personalized QoS prediction 
method named RMF which integrates MF with 
reputation. Memory-based methods are easy to 
implement and understand, they can provide a 
systematic way to train a predefined compact model in 
the training phase that explains observed values, which 
is then used to make predictions. Additionally, 
model-based CF methods can achieve better 
performance [22]. Hence, we focus on model-based 
approaches in this paper. 

2.2 Online learning 
Online learning is a common technique used in areas of 
machine learning where it is computationally infeasible 
to train over the entire dataset. In this method, data 
becomes available in a sequential order and is used to 
update the best predictor for future data at each step [23], 
[24], as opposed to batch learning techniques which 
generate the best predictor by learning on the entire 
training data set at once. It is used in situations where it 
is necessary for the algorithm to dynamically adapt to 
new patterns in the data, or when the data itself is 
generated as a function of time [25]. Online learning has 
been gained comprehensive attention in collaborative 
filtering. Lemire et al [26] proposed slope one algorithm 
for online rating-based collaborative filtering, Lefevre et 
al [27] proposed an online algorithm for Non-negative 
Matrix Factorization. Das et al [28] proposed a scalable 
online collaborative filtering algorithm which is a 
mixture of memory-based and model-based algorithm. 
Mairal et al [29] proposed online learning for matrix 
factorization, which is applied in computer vision area. 
In [30] and [31], online algorithms (e.g., stochastic 
gradient descent method) are adopted for model-based 
collaborative filtering, but the properties (efficiency, 
convergence, etc.) of various algorithms are still not 
well-investigated. In this paper, we study online 
algorithms to solve the issues facing batch-trained CF 
algorithms and proposed online learning MF algorithms. 

3  The prediction framework  
To build hig work for online learning MF based QoS 
prediction, as illustrated in Fig. 1.  
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Figure 1 Framework of OLMF QoS prediction 

As shown Fig.1, the main idea of our approach is: 
Online QoS prediction server collects users-observed 
QoS values and employs online learning MF model to 
predict unknown QoS values. The details steps are as 
follows: 1) Users (cloud service application) invoke 
remote cloud services and observe the QoS values of 
these services, and submit their observed QoS values to 
the QoS prediction server. 2) The server first collects the 
user-contributed QoS values and save them to database. 



Proceedings of CCIS2016

Then the online learning matrix factorization model 
performs update if new data comes, and finally makes 
personalized QoS prediction and returns prediction 
results to the target user. 3) Users employ the 
corresponding prediction results to select optimal Web 
service. Noteworthily, QoS values can be measured at 
the server side or the user side. QoS properties provided 
by server-side are not personalized, while QoS 
properties provided by user-side are more realistic and 
personalized [32]. This paper mainly focuses on user 
side QoS properties which will provide different 
property values for different users (or user applications).

4  QoS prediction based on online learning 
matrix factorization 
In this section, we first introduce the QoS value 
prediction problem on cloud services in Section 4.1. 
Then we describe the conventional matrix factorization 
model in Section 4.2. At last, Section 4.3 presents our 
online learning matrix factorization (OLMF) models in 
detail. 

4.1 Problem description 
The problem studied in this paper is to predict the 
unknown QoS value at each time slice. The prediction 
process usually includes a user-service-time matrix, 
where each entry in this matrix represents the value of a 
certain QoS property (e.g., response-time in this 
example) of a cloud service observed by a service user at 
each time slice. The intractable issue in QoS prediction 
is data sparsity. High data sparsity means that most 
entries in the user-service-time invocation matrix are 
unknown. Thus, our main task is to fulfill unknown 
values in the matrix. However, QoS values are changed 
over time, which may lead to the change of QoS 
prediction result for each user. Therefore current 
approaches need modification to work more effectively. 

Our goal of QoS prediction is to employ the observed 
QoS data to estimate other unknown values. Intuitively, 
suppose that there are a set of users U={u1, u2, , um}, 
and a set of services S={s1, s2, , sn} at a certain time 
slice, we can estabish a m×n user-service sparse matrix 

m nR m n
. In this matrix, each entry rij (i m, j n)

represents the value of a certain QoS property (e.g., 
response time), which means user i invokes service j and 
submits a QoS value. The online QoS prediction 
problem can be modeled as a collaborative filtering 
problem, which can be expressed as: at each time slice, 
the unknown values can be predicted by approximately 
reconstructing from the observed values and performed 
online and accurately. 

4.2 QoS prediction with matrix factorization 
The basic matrix factorization (MF) model maps users 
and services to a joint latent factor space to represent 
user-service interactions. The key step of MF is to 
factorize the high dimensional matrix into two low 
dimensional feature matrices that are in the same feature 

space. Let l mU l m  denotes the feature matrice of user 
U, and l nS l n represent service latent feature matrices, 
where l is the number of latent factors. The number of 
factors l is called dimensionality [33]. The prediction for 
invocation matrix R can be factorized as the product of 
U and S approximately as follows: 

TR U STR U ST , (1) 

where (1 ,  1 ),ijR r i m j nR rrjijr (1ij (1(1r (1ij ijrijrij is the predicted 
value of rij. The key step of predicting QoS using MF 
model is to build up an objective function, which is 
designed to reduce the total approximate errors. The 
objective of MF is to minimize the sum of squared errors 
with quadratic regularization terms. Let Ui and Si denote 
the ith and jth column of U and S, respectively. The 
objective function can be represented as Eq.(2). 
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where Iij is a indictor function, Iij is 1 or 0, indicating rij is
known or not. The Frobenius norm 

F
 is employed to 

avoid the over-fitting issue during the learning process. 
U, S are both small positive decimals. Gradient decent 

algorithm can be employed to get a local minimum of 
the objective function, and the feature space U and S can 
be reconstructed as follow: 

' ',i i j j
i j

U U S S
U S
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where  is the learning rate. In Eq. (3), the low-rank 
matrices move toward the average gradient descent at 
each iteration. The local minimum of the objective 
function can be found by performing gradient descent in 
L/ Ui and L/ Sj controlled by . Once the stopping 

criterion is met, all unknown values in the original 
matrix can be recovered by these feature spaces. In this 
process, since the entire U and S are predicted by 
batch-training, it may cost too much time in the online 
condition. Therefore, to improve the prediction 
efficiency, employing online algorithm is crucial and 
necessary. 

4.3 Online learning for matrix factorization 
As QoS values may vary over time, online learning 

algorithms are required to keep continuous and 
incremental updating using the sequentially 
user-observed QoS data. For this purpose, we employ 
stochastic gradient descent (SGD) [34], a classic online 
learning algorithm, to train our OLMF model. The main 
idea of OLMF algorithm can be restructured as follow: 
if the observed QoS values are coming sequentially, we 
adjust the model stochastically by taking into account 
that value only at each time slice. Suppose the new 
coming QoS value is (Ui, Sj, rij, tij) Rt, where t denotes 
each time slice. For each QoS value observed by user Ui
for invoking service Sj, we can minimize the following 
objective function: 
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The first term in the equation above is the squared error 
between the observation and predicted value, and the 
remaining two terms are the corresponding 
regularizations. Notice that here the trade-off constants, 

u and s, are on different scale from those in Eq. (2). We 
employ stochastic gradient descent algorithm to acquire 
a local minimum within iterative loops and obtain the 
following update equations: 
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(6) 
where  is the learning rate which is used to control how 
much change to make at each step. This online algorithm 
is stochastic every time, it can be described that every 
time when a new data sample (Ui, Sj, rij, tij) comes, 
online updating can be performed on its corresponding 
factors Ui and Sj using Equation 5 and 6. The pseudo 
code of QoS prediction algorithm based on OLMF is 
provided in Algorithm 1. 

Algorithm1 OLMF-based QoS prediction construction 
Input: original training matrix R sequentially QoS value (Ui,

Sj, rij, tij), all the model parameters 
Output: prediction result: ijrijrij (Ui , Sj)
1:   repeat 
2:     initialize Ui and Sj.with small random numbers; 
3:     if a new data (Ui, Sj, rij, tij) comes then
4:        update rij, tij;
5:        update Ui, Sj by Equation 5 and 6; 
6:         if convergence  then 
7:             wait until new QoS data comes; 
8:          end if 
9:     end if
10:  until forever

In Algorithm 1, the newly QoS data is collected to 
update the model at each iteration, or else initialized 
with randomly numbers Ui and Sj when conduct matrix 
factorization. 

5  Experiment 
In this section, we conduct experiments to validate our 
OLMF approach, our experiments are intended to: 1) 
verify the rationality of our approach; 2) discuss how the 
model parameters affect the prediction accuracy; and 3) 
compare our OLMF approaches with other 
state-of-the-art methods. Our experiments were 
conducted on a machine with a 2.4 GHz Intel CPU and 
8GB RAM, running Win7 operating system. 

5.1 Dataset description 
In this paper, the datasets is from a real world Web 
service QoS dataset [20], which includes both response 
time and throughput values. These QoS values are 
collected by 142 users (PlanetLab nodes) invoking 4,500 
Web services for 64 consecutive time slices, at an 
interval of 15 minutes, which can be built to a 
three-dimensional user-service-time matrix. In our 
experiments, we use the response time dataset to verify 

our approach.  

5.2 Evaluation metrics 
We use MRE Median Relative Error and 90% NPRE 
(ninety percentile relative error) as the evaluation 
metrics of prediction accuracy. MRE and NPRE are 
defined as follows: 

0
( )/

ij
ijij ijI

rMRE median r r )/ ijij ij (7) 

90% / ijij ij rNPRE r r / ijij ij rijr rij ijr (8) 
Due to the large variance of QoS values, MRE and 
NPRE are more appropriate to evaluate the QoS 
prediction optimization efforts than other metrics (e.g. 
mean absolute error). 

5.3 Performance comparison 
To prove the effectiveness of our model, we ran 
extensive experiments and compare our method with 
probabilistic matrix factorization PMF [35], which is a
probabilistic linear model with Gaussian observation 
noise.

Table I Parameter settings 

Parameters Methods 
PMF OLMF 

density 10%-50% 10%-50% 
time slice  64 64 
rounds  20 20 
dimension 10 10 

 0.01 0.8 
u= s 30 0.003 

maxIter  100 100 

In this experiment, matrix density is defined as the 
density of the training dataset. In this experiment, each 
QoS prediction method is run on 10 different matrices, 
whose densities are 10% to 50% at a step increase of 
10%. For example, a matrix density of 10% means that 
10% entries in the matrix are used for predicting 
unknown QoS values, while the remaining 90% are ones 
waiting to be predicted. Additionally, the maximum 
iterations are both set to 100. At each time slice, each 
approach is performed 20 times and taken the average. 

Table II Accuracy comparison on response time 

Density Metrics PMF OLMF Impro. vs PMF 

MD=10% 
MRE 0.593 0.309 47.9% 
NPRE 3.017 0.970 67.8% 

MD=20% 
MRE 0.596 0.281 52.8% 
NPRE 3.414 0.899 73.6% 

MD=30% 
MRE 0.581 0.266 54.2% 
NPRE 3.390 0.865 74.5% 

MD=40% 
MRE 0.564 0.258 54.3% 
NPRE 3.294 0.849 74.2% 

MD=50% 
MRE 0.546 0.255 53.2% 
NPRE 3.198 0.844 73.6% 

Table II shows the MRE and NPRE results of different 
methods with different density. The experimental results 
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show that our OLMF approach can achieve smaller 
MRE and NPRE values than PMF for response-time 
with different matrix densities, which indicates further 
higher accuracy than existing approaches and verifies 
the effectiveness of our approach. Concretely, in average 
sense, OLMF can acquire 52.5% improvement in MRE 
and 72.7% improvement in NPRE than PMF model. 

5.3 Impact of Matrix Density 
To study the impact of matrix density, we vary the 
density of matrix from 5% to 45% with a step value of 
10%. We set dimensionality = 10, and u = s=0.003, 
respectively. Fig. 2 illustrates the experimental results.

(a)

(b)
Figure 2 (a) MRE at different time slice. (b) NPRE at different 

time slice. 

Fig.2 shows the average MRE and NPRE under different 
density matrix for 64 time slice. We can see that with the 
increase of density matrix, prediction result becomes 
more accurate. In particular, the smaller the matrix 
density (e.g., 5%), the bigger the error will be shown. 
This is because the matrix is sparse and the prediction 
model is easy to fall into overfitting problem. This 
problem weakens with the increase of matrix density, 
which will achieve more accurate prediction result. 

5.4 Convergence time analysis 
In order to evaluate the effectiveness of online MF 
method, we compared convergence time with PMF. As 
shown in figure 3, for OLMF, the convergence time is 
long at the beginning, while it becomes fast after the 
fifth time slice. This is because OLMF incrementally 
updates the model by online learning algorithm, while 
PMF updates the model by batch learning algorithm. 
PMF need to re-train the whole model at each time slice, 
leading to high computational cost. Therefore, our 

OLMF model is more effective than PMF. 

Figure 3 Convergence time comparison 

6  Conclusion and future work 
Cloud computing is popular nowadays. Many cloud 
applications are built by cloud services. To build high 
quality cloud computing applications, exploring efficient 
techniques become an urgent task. Due to the 
time-variant user-observed QoS, it is a challenge to 
select proper services for each cloud application. In this 
paper, we propose an online learning based personalized 
cloud service QoS prediction approach named OLMF 
for cloud computing applications. Firstly, we build the 
online MF objective function. Then we use online 
stochastic gradient descent algorithm.to solve the 
function. Finally, Extensive experiments based on a 
real-world dataset are conducted to verify its good 
performance in achieving accuracy and efficiency. 

In the future, to continuously improve our prediction 
performance, we will take more different scenarios into 
consideration, such as adapting the prediction model 
when the scale of users or services changes. We also will 
try to combine other related information (e.g., location, 
reputation) to improve the prediction outcome in terms 
of matrix factorization itself. 
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